
(defface nano-read-prompt-warning-face
 `((t :foreground ,(face-foreground 'nano-critical-i)
 :background ,(face-background 'nano-critical-i)
 :weight ,(face-attribute 'bold :weight)
 :box ,(face-background 'nano-critical-i)))
 "Face for prompt")

(defvar nano-read-with-date-map
 (define-keymap
 :parent minibuffer-mode-map
 "<tab>" #'nano-read-with-date--today
 "S-<right>" #'nano-read-with-date--forward-day
 "S-<left>" #'nano-read-with-date--backward-day
 "M-<right>" #'nano-read-with-date--forward-week
 "M-<left>" #'nano-read-with-date--backward-week
 "M-S-<right>" #'nano-read-with-date--forward-month
 "M-S-<left>" #'nano-read-with-date--backward-month
 "S-<down>" #'nano-read-with-date--backward-30mn
 "S-<up>" #'nano-read-with-date--forward-30mn)
 "Keymap is used in conjunction with the `nano-read-with-date'
and allows to set the date and time on the right side.")

(defvar nano-read-with-list-map
 (define-keymap
 :parent minibuffer-mode-map
 "<tab>" #'nano-read-with-list--next
 "S-<down>" #'nano-read-with-list--next
 "S-<up>" #'nano-read-with-list--prev)
 "Keymap is used in conjunction with the `nano-read-with-list'
and allows to select next/prev item on the right side.")

Roberto Di Cosmo, Sabrina Granger,
Nicolas Jullien, Konrad Hinsen,
Daniel Le Berre, Violaine Louvet,
Camille Maumet, Clémentine Maurice,
Raphaël Monat & Nicolas P. Rougier*CODE

BEYONDFAIR

*INRIA / NEURODEGENERATIVE DISEASES INSTITUTE — BORDEAUX

In their study, McKinney et al. (Nature, 2020) showed the high potential of artificial
intelligence for breast cancer screening. However, the lack of detailed methods and
computer code undermines its scientific value. We identify obstacles hindering
transparent and reproducible AI research as faced by McKinney et al and provide
solutions with implications for the broader field.

… More specifically, the authors’ description of the model development as well as
data processing and training pipelines lacks critical details. The definition of
multiple hyperparameters for the model’s architecture is missing. The authors did
not disclose the parameters used for data augmentation; the transformations used
are stochastic and can significantly affect model performance. Details of the
training pipeline were also missing…

‟The importance of
 transparency and reproducibility
 Haibe-Kains et al., arXiv, 2020

Can you really do less than that?
Yes, but in 1988 (Russ Poldrack)

October 2014

… In this publication, several deviations from our community's standards stand out.
First, the absence of available code compromises peer review, a cornerstone of
scientific publication and a standard typically upheld by journals. Indeed, one of us
(RD) was a reviewer, and despite repeated requests, he was not given access to
code during the review…

Nature answer: …This was not a decision we took lightly, and this editorial briefly
explains our reasoning. We think that research, regardless of the sector that does
it, should be evaluated through peer review and published for the benefit of society
and science. At the same time, we have no wish for this to be the final word. This is
an opportunity for an important conversation among all research stakeholders at a
time when the majority of global research is privately funded…

Addendum: …This repository contains all necessary code for AlphaFold 3 inference.
To request access to the AlphaFold 3 model parameters, please complete this form.
Access will be granted at Google DeepMind’s sole discretion…

‟AlphaFold3 Transparency and Reproducibility
 An open letter
 Wankovic et al., Zenodo, 2024

Harvard University economists C. Reinhart and K. Rogoff have acknowledged
making a spreadsheet calculation mistake in a 2010 research paper which has
been widely cited to justify budget-cutting. But the authors stand by their
conclusion that higher government debt is associated with slower economic
growth.

Reinhart and Rogoff’s work showed average real economic growth slows (a 0.1%
decline) when a country’s debt rises to more than 90% of gross domestic product
(GDP) – and this 90% figure was employed repeatedly in political arguments over
high-profile austerity measures. When that error was corrected, the 0.1% decline
data became a 2.2% average increase in economic growth.

‟The Excel error
 that changed history
 Coy, Bloomberg, 2013

1. The proof is too ugly to show anyone else
2. I didn't work out all the details
3. I didn't actually prove the theorem - my student did
4. Giving the proof to my competitors would be unfair to me
5. The proof is valuable intellectual property
6. Including proofs would make math papers much longer
7. Referees would never agree to check proofs
8. The proof uses sophisticated mathematical machinery that most readers don't know
9. My proof invokes other theorems with unpublished (proprietary) proofs
10. Readers who have access to my proof will want user support

‟Top ten reasons to not share your code
 (and why you should anyway)
 Leveque, Society of Industrial and Applied Mathematics, 2013

Bad code is always
better than no code

(don't be a panda)

‟FAIR Principles
 Principles for scientific data management and stewardship
 Wilkinson et al., Scientific Data, 2016

Credits: Ainsley Seago (CC-BY)

Credits: Sangya Pundir (CC-BY-SA)

F — Software, and its associated metadata, is easy for both humans and
machines to find. (F1, F1.1, F1.2, F2, F3, F4)

A — Software, and its metadata, is retrievable via standardised protocols.
(A1, A1.1, A1.2, A2)

I — Software interoperates with other software by exchanging data and/or
metadata, and/or through interaction via application programming
interfaces (APIs), described through standards. (I1, I2)

R — Software is both usable (can be executed) and reusable (can be
understood, modified, built upon, or incorporated into other software). (R1,
R1.1, R1.2, R2, R3)

‟FAIR4RS
 FAIR principles for research software
 Barker et al., Nature, 2022

F — Software, and its associated metadata, is easy for both humans and
machines to find. (F1, F1.1, F1.2, F2, F3, F4)

A — Software, and its metadata, is retrievable via standardised protocols.
(A1, A1.1, A1.2, A2)

I — Software interoperates with other software by exchanging data and/or
metadata, and/or through interaction via application programming
interfaces (APIs), described through standards. (I1, I2)

R — Software is both usable (can be executed) and reusable (can be
understood, modified, built upon, or incorporated into other software). (R1,
R1.1, R1.2, R2, R3)

‟FAIR4RS
 FAIR principles for research software
 Barker et al., Nature, 2022

Much harder
than it seems

Even
Harder

To investigate the extent to which Computer Science researchers are willing to share their
code and data, and the extent to which this code will actually build with reasonable effort,
during the spring and summer of 2013 we performed the following study. We downloaded 613
papers from the latest incarnations of eight ACM conferences and five journals, all with a
practical orientation. For each paper we determined whether the published results appeared
to be backed by source code or whether they were purely theoretical.

Next, we examined each non-theoretical paper to see whether it contained a link to
downloadable code. If not, we examined the authors’ websites, did a web search, examined
popular code repositories such as github and sourceforge, to see if the relevant code could be
found. In a final attempt, we emailed the authors of each paper for which code could not be
found, asking them to direct us to the location of the source. In cases when code was
eventually recovered, we also attempted to build and execute it.

‟Measuring Reproducibility
 in Computer Systems Research
 Collberg et al., Technical report, University of Arizona, 2014

xkcd.com/1742/

‟Measuring Reproducibility
 in Computer Systems Research
 Collberg et al., Technical report, University of Arizona, 2014

~20% success runs
(without any guarantee on results)

Lot of pandas
around…

The code should be executable (re-runnable) and produce the same result more than
once (repeatable); it should allow an investigator to reobtain the published results
(reproducible) while being easy to use, understand and modify (reusable), and it should
act as an available reference for any ambiguity in the algorithmic descriptions of the
article (replicable).

See also Terminologies for Reproducible Research, Barba, 2018
One big problem keeps coming up among those seeking to tackle the issue: different
groups are using terminologies in utter contradiction with each other.

‟Re-Run, Repeat, Reproduce, Re-use, Replicate
 Transforming Code into Scientific Contributions
 Rougier & Benureau, Frontiers in Neuroinformatics, 2018

xkcd.com/844/

Would you dare to run the
code from your past self ?
(the one that does not answer mail)

R E S C I E N C E S P E C I A L I S S U E
F R E E T O R E A D - F R E E T O P U B L I S H

Ten Years Reproducibility Challenge

The Ten Years Reproducibility Challenge aims “to find out which of the ten-year-old
techniques for writing and publishing code are good enough to make it work a
decade later”, Hinsen says. It was timed to coincide with the 1 January 2020 ‘sunset’
date for Python 2, a popular language in the scientific community, after 20 years of
support. (Development continues in Python 3, launched in 2008, but the two
versions are sufficiently different that code written in one might not work in the
other.)

In his reproducibility attempt, Roberto DiCosmo, a computer scientist at INRIA and
the University of Paris, highlighted another common difficulty for challenge
participants: locating their code in the first place. DiCosmo tackled a 1998 paper
that described a parallel programming system called OcamlP3l. He searched his
hard disk and back-ups, and asked his 1998 collaborator to do likewise, but came
up empty. Then he searched Software Heritage, a service DiCosmo himself had
founded in 2015. “There it was, incredible,” he says.

‟Challenge to scientists
 Does your ten-year-old code still run?
 Perkel, Nature, 2020

We collect and preserve software in source code form, because software embodies our
technical and scientific knowledge and humanity cannot afford the risk of losing it.

Software is a precious part of our cultural heritage. We curate and make accessible all the
software we collect, because only by sharing it we can guarantee its preservation in the very
long term.

Software Heritage
 The great library of source code
 DiCosmo et al., Paris Call - Software Source Code as Heritage, 2017

→ Google code (RIP, 2015) → archived
→ Gitorious (RIP, 2015) → archived
→ GitHub (RIP, 20??) → archived anyway
 (Embrace, Extend & Extinguish)Margaret Hamilton 50 years later, Apollo 11 code

is still accessible (thanks to paper)

Rougier’s entry reproduces the oldest code in the challenge, an image magnifier
for the Apple II that he wrote aged 16 and published in a now-defunct French
hobbyist’s magazine called Tremplin Micro. (The oldest scientific code in the
challenge, described in an as-yet-unpublished paper submitted to ReScience C,
was a 28-year-old program written in Pascal for visualizing water-quality data.)
Thirty-two years later, Rougier no longer remembers precisely how the code, with
its arcane AppleSoft BASIC instructions, works — “which is weird, because I wrote
it”. But he was able to find it online and make it run on a web-based Apple II
emulator. That, he says, was the easy bit; the hard bit was running it on an actual
Apple II.

‟Challenge to scientists
 Does your ten-year-old code still run?
 Perkel, Nature, 2020

Free/Libre and
Open Source Software

(to the rescue)

A program is “free software” if the program’s users have the 4 essential freedoms:

1. The freedom to run the program as you wish, for any purpose.
2. The freedom to study how the program works, and change it so it does your

computing as you wish. Access to the source code is a precondition for this.
3. The freedom to redistribute copies so you can help your neighbor.
4. The freedom to distribute copies of your modified versions to others. By doing

this you can give the whole community a chance to benefit from your changes.
Access to the source code is a precondition for this.

‟Free Software
 Free as in speech, not free as in beer
 Stallman, 1983

In the early years, the distribution of GNU software was primarily done through
physical media (floppies, CDs), FTP, BBS systems, and academic networks. The
growth of the internet, particularly with the expansion of FTP and later CD-ROM
distributions, made it easier for users around the world to access and share GNU
software. Stallman and the FSF played pivotal roles in making the software
available for free, ensuring that users had the legal right to use, modify, and share
the software.

GNU Emacs (GPL), the extensible, customizable, free/libre text editor — and more,
is almost 50 years old and still running…
The Linux kernel (GPL), is more than 30 years old and still running…
…Perl (1987), GCC (1987), XWindow (1987), BIND (1983), TeX (1978), dc (1970), …

‟Free Software
 Free as in speech, not free as in beer
 Stallman, 1983

The Cathedral and the Bazaar
 Musings on Linux and Open Source by an Accidental Revolutionary
 Raymond, 1999

How it started (1991)

How it is going (2017)
~ 10k lines of code (1991)

~ 29M lines of code (2021)

Found in a reviewed paper about FAIR4RS (sic)
“Research software is not required to meet the requirements that

are normally a must for other scientific methods: being peer-reviewed,
being reproducible and allowing one to build upon another’s work”

There is a real risk. There are people who
have suffered real harm to their careers
because of their interest in building
powerful, new tools rather than writing a
few more scientific papers.

Fernando Pérez

No Recognition
(and no funding either)

→ https://postopen.org/

Collaborate
Open
Document
ExecuteCODEfor

RESEARCHERS & STAKEHOLDERS

Libraries FundersInstitutions Publishers

STAKEHOLDERS

RESEARCHERS & STAKEHOLDERS

‟Les forges logicielles de l’ESR
 Définition, usages, limitations et analyse des besoins
 Le Berre et al., 2023

Dans l’enseignement supérieur et la recherche, les
développeurs de logiciels soutiens ou issus de travaux de
recherche ont le choix entre diverses forges pour héberger leur
production logicielle. Si leur établissement dispose d’une forge,
c’est la solution la plus simple, surtout si aucune interaction en
dehors de l’établissement n’est nécessaire.

Quand un besoin d’interaction plus important est nécessaire,
les communautés qui développent des logiciels de recherche se
tournent fréquemment vers les forges commerciales en ligne,
comme en témoignent les lauréats du premier prix science
ouverte du logiciel libre de recherche : 9 projets hébergés sur
GitHub et un projet hébergé sur SourceForge.

‟Prix science ouverte
 du logiciel libre de la recherche
 Depuis 2022

Le prix science ouverte du logiciel libre de la recherche
récompense les projets et les équipes qui œuvrent au
développement et à la diffusion des logiciels libres, et qui
contribuent ainsi à la construction d’un bien commun de
première importance pour la connaissance scientifique.

Inscrit dans le deuxième Plan national pour la science
ouverte et remis par le ministère de l’Enseignement
supérieur et de la Recherche, le prix comporte plusieurs
catégories qui distinguent les projets selon leurs
dimensions scientifique et technique, leur capacité à former
et animer leur communauté et la qualité de leur
documentation.

Collaborate
Open
Document
ExecuteCODEfor

RESEARCHERS & STAKEHOLDERS

Not all scientific software are created equal. Some are meant to be
widely spread in the scientific community, to grow and to be maintained
in the long term, while others serve solely as a one-shot illustration of a
concept or an idea. But both are important for Science.

Imposing some high-level principles indifferently of the nature of the
software and the people that create it might be counter-productive.

